Superintegrable hamiltonian systems: An algebraic approach
نویسندگان
چکیده
منابع مشابه
Poisson Algebras and 3D Superintegrable Hamiltonian Systems
Using a Poisson bracket representation, in 3D, of the Lie algebra sl(2), we first use highest weight representations to embed this into larger Lie algebras. These are then interpreted as symmetry and conformal symmetry algebras of the “kinetic energy”, related to the quadratic Casimir function. We then consider the potentials which can be added, whilst remaining integrable, leading to families ...
متن کاملSuperintegrable Deformations of the Smorodinsky–Winternitz Hamiltonian
A constructive procedure to obtain superintegrable deformations of the classical Smorodinsky–Winternitz Hamiltonian by using quantum deformations of its underlying Poisson sl(2) coalgebra symmetry is introduced. Through this example, the general connection between coalgebra symmetry and quasi-maximal superintegrability is analysed. The notion of comodule algebra symmetry is also shown to be app...
متن کاملLayered Graph Traversals and Hamiltonian Path Problems - An Algebraic Approach
Using an algebra of paths we present abstract algebraic derivations for two problem classes concerning graphs, viz. layer oriented traversal and computing sets of Hamiltonian paths. In the rst case, we are even able to abstract to the very general setting of Kleene algebras. Applications include reachability and a shortest path problem as well as topological sorting, cycle detection and nding m...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملSuperintegrable Systems on Sphere
We consider various generalizations of the Kepler problem to three-dimensional sphere S, a compact space of constant curvature. These generalizations include, among other things, addition of a spherical analog of the magnetic monopole (the Poincaré–Appell system) and addition of a more complicated field, which itself is a generalization of the MICZ-system. The mentioned systems are integrable —...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2009
ISSN: 1742-6596
DOI: 10.1088/1742-6596/175/1/012007